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LETTER TO THE EDITOR 

On the Hamiltonian structure and generalised Lie-Backlund 
symmetries of Langmuir solitons 

Swapna Roy and A Roy Chowdhury 
High Energy Physics Division, Department of Physics, Jadavpur University, Calcutta 
700 032. India. 

Received 14 October 1987 

Abstract. The structure of generalised Lie-Backlund symmetries for the coupled equations 
of Langmuir solitons are analysed in detail. The form of these symmetries, when compared 
with those of the conservation laws, yields the first symplectic form. The spectral gradient 
method is then seen to generate the recursion operator for these symmetries which, on 
factorisation, leads immediately to the second Hamiltonian structure. The same recursion 
operator, when used along with the (x, 1)-dependent symmetries, yields a new class of 
generalised symmetries for the equations under consideration. Lastly it is observed that 
these symmetries are in involution with respect to a Jacobi bracket. 

Lie-Backlund symmetries have played an important role in the analysis of non-linear 
partial differential equations [ 11. Exhaustive studies were done in the papers of Fokas 
[2], Fuchssteiner [3], Vinogradov [4] and others. The basic class of equations usually 
studied is the scalar single-component equation, but occasionally some coupled cases 
were also considered [ 5 ] .  Here we have found the full class of Lie-Backlund symmetries 
for the case of Langmuir solitons, governed by a coupled system of a complex equation 
for the electric field E(x, t )  and a real equation for the electron density n. These 
equations can be written in the form 

iE, +;Ex, - nE = 0 

n, + n, + [ E  1: = 0. 
(1) 

Let us set +(x, t )  = E(x, t )  exp[-i(t/2-x)]. Then (1) reduces to 

i+ ,+i+x+&xx-n+ = O  

n, + n, + lc$l’x = 0. 

x - t = y x ’  t = E t ‘  

If we now make the following change of variable: 

+’= aA n = p B  

with y = 2, p = 2, E = -1, (Y = 2i, then we get 

iA, - 2Axx = -2AB 
(4) 

where we have changed the primed variables to ordinary ones. In the following we 
will observe that it is convenient to use equation (4) instead of (1). 

B, = -4(AA*), 

(3) 
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To obtain the conserved quantities we consider an approach advocated by Chen 
and Liu instead of using the Lax pair proposed in [6]. The linearised equation 
corresponding to (4) is 

0 2iA 
2ia: -2iB -2iA*][;). 

-4a,A 0 

Then the adjoint of equation ( 5 )  can be written as 

We search for a solution in the form 

(3) = (:lkk) exp( Kx+2iK2t+ II dx) 
(7) 

and assume U, b ( k ) ,  c ( k )  to be expandable in the form: 

a n (I 

U =  c u,k-’ b ( k )  = b,k-’ ~ ( k )  = c cJk-’ 
J = O  J =o J =O 

which leads to a coupled set of recursion relations for a], b,, c,, which can be solved 
in stages to yield 

u o = o  

-1 
1 -2B 

4iu, = -iB, - 6AA* 

4i0 ~-2iB, , - f iR’+A~A+3A*A, -1. 

4iu, = -yA,,A* - 2A,AT -;AA:, + 6AA* B + iBB, -$B,,, 

diu, = ~A,,,A* + ~A,,A: +;A:~A, + ~A:,.,A -;A,A* B - $A:AB 

- 3AA* B, -& BB,,) + 4iB3 - ii B i  + $iB,,,. 

The conserved quantities are nothing other than the variational derivatives 6a,/ SA, 
6a1/6A*,  6u,/SB. One can actually find the infinite class of a, from (6) and (7) .  

We now proceed directly with the linearised equation ( 5 )  instead of its adjoint and 
try to find solutions of A , ,  A:,  B, in the jet space (A,, B,; A, = a‘A/ax‘, B, = a‘B/ax‘). 
The total time and space derivative operators are written as 



Letter to the Editor L279 

Then a laborious computation leads to the following set of solutions for the linearised 
fields, A, ,  AT, B,:  

(i) Ai = -2iA Al. = iA" BI = O  
B2 - 2' 

1 - 31B, 
A2 -2' 

I *  - 31At A2 - 2' (i i)  I - 31A.Y 

(ii i)  A: = -2i(A,, -AB) A:. = 2i(A:x - A * B )  

B: = -4(AA*), 

A: = $A,,, - iA,B -;iAB, - A2A* 

A:* = $A:,x - iA,*B -$A*& - AA*2 

B':=(A,A*-A~A)-f i (B') ,+~iB, , , .  

(iv) 

Now an interesting and important observation is that (3)=($ 0 - $  0 : )(Sd+'/SA*). Sui+'/ SA 

0 0 -$ia, S u ' + ' / S B  

Thus the matrix 

can be considered to give the first symplectic structure of the Langmuir solitons. 
Indeed, it is easy to see that 

(12) 

which is nothing other than the original equation of motion. 
The existence of an infinite number of conservation laws and their corresponding 

symmetries suggests that it will be possible to find an operator (the recursion operator 
R )  which will generate the whole hierarchy of LB symmetries starting from the lowest 
one. The most useful technique to construct a recursion operator is to impose the 
condition that 

R ? ' = v ' + l  

where 

But some important restrictions that are to be imposed on R are (i)  it is not always 
possible to connect the lowest LB symmetry via R, (ii) it is also not true that the 
generation via R will always be consecutive. Actually, in our present situation we 
have observed that R connects only even v, i.e. v2", and odd 7, i.e. v2"+',  separately. 
Mathematically it amounts to 
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From the form of the symmetries given in (10) it immediately implies that R possesses 
the structure 

(15) 
a f ;+a  b 

where a, 6, c, d, etc, may contain D, D-', etc, and the field variables. In this particular 
case we have seen that it is given as 

D ~ - + A * D - ~ A -  2 B $A*D-~A* iiA*D + iAz 
R = [ -$iAD-'A D2 + $iAD-'A* - B - t iAD - iA, 1. 
Verification can be made over the form of symmetries given in (10). Until now we 
have not used the inverse scattering equation for (1). At this stage we may use the 
spectral gradient method of Fokas [5 ]  to verify (16). The IST equations pertaining to 
this equation were suggested by Yan-Chow Ma [ 6 ] :  

(16) 
- ~ D - ~ A D  - ~ D - ' A * D  -$A* - f~ --@I BD +$D' 

av,/ax = 3ilVl+AV2+iBV3 

a V2/ax = 2ilV2+ A* V3 (17) 

a V3/ax = i lV3 - i V, 

or dV/dx  = U(& x)  V a ,  5 being the eigenvalue of the problem. Let us now compute 
the gradient of l and call it G,. If we can show that Gc satisfies 

*G, = 4l)GC 
i.e. Gc follows an eigenvalue equation. Then G, can be identified with the operator 
R. In the present case G, turns out to be proportional to ( V V*), the analogue of 
the square eigenfunction where V* is the adjoint of V. It is now a matter of computation 
to verify that 

(18) 
-i V3 V? -i V, V r  

so that the form of recursion operator is verified from two points of view. 
It is now very interesting to observe that 

R = J - ' M  

where 

1 - $AD-'A D2+$AD-'A*- B -$AD - iA, 
-D*+$A*D-'A+B -$A*D-'A* -iiA*D-iA$ . 

-iA*D - fiDA* -iAD - f i  DA -iDB - iBD + $D3 

It then easily follows that 

Sa4/  S B Saz/ SB 

explicitly displaying the bi-Hamiltonian structure associated with the Langmuir soliton 
equations. So M gives the second symplectic structure. 
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The involutive character of the symmetries follows from the Jacobi bracket defined 
via 

{ T ,  a)= ~(v)[uI- ~ ( ~ E V I  (21) 

where [ 771 and [a] stand for the symmetry vectors (77, , 772, v 3 )  and ( a ! ,  uz, a3) along 
with 

The Jacobi bracket was initially introduced by Vinogradov [4] in his study of 
time-dependent symmetries of the Burger equation. It was also seen to be useful in 
the general study of non-local and generalised symmetries as discussed by Kosmann- 
Schwarzbach [7]. 

Lastly we can mention that a new kind of (x, ?)-dependent symmetry can be obtained 
if a lowest-order (x, t)-dependent symmetry can be found. In the present case we have 
observed that 77 = (tA, -tA*, -si) is a symmetry vector, but it is also in involution with 
the ordinary symmetries via (21). 

In our previous analysis we have obtained the structure of symmetries, conservation 
laws, recursion operator and bi-Hamiltonian structure associated with a coupled system 
of three equations. However, the analysis never uses the inverse scattering technique 
except at some stage to verify the form of the recursion operator. 

This work was part of the programme sponsored by DST (Government of India) 
through a Thrust Area Project. 
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